

Materials

U

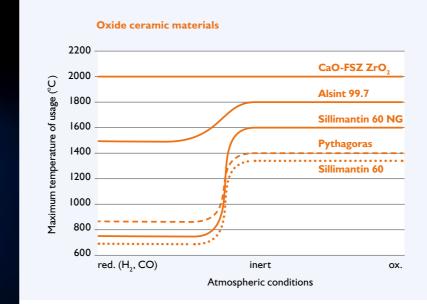
0

1

Contents

- High temperature usage 3
- Aluminium oxides 4
- Aluminium silicates 6
- Silicon carbides 8
- 10 Fused silica Zirconium oxides Spinel
- 12 Chemical resistance of high purity aluminium oxides
- Tolerances according to DIN 40680 14
- 15 Our ceramic shaping variants

High temperature usage

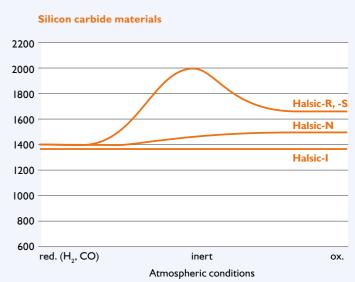

Due to their specific chemical nature, ceramic materials may be used in high (> 1200°C) and very high temperature conditions (> 1500°C). In some cases, the usage of ceramic materials is the only viable choice, especially as compared with metallic materials.

For choosing the best ceramic material, at least the following aspects should be taken into account:

- \rightarrow Maximum peak and dwell temperatures
- \rightarrow Atmospheric conditions in the vicinity of the ceramic part
- \rightarrow Mechanic loading of the part at high temperature

Maximum operating temperatures

for the different atmospheres given for oxide ceramic and silicon carbide materials



Please note that all values quoted are based on test specimens and may vary according to component design. These values cannot be guaranteed and can only be transferred to other forms and dimensions to a limited extent. They should be used for guidance only.

Parts to be used at high temperature usually are not designed for maximum strength at room temperature. Rather, creep deformation behaviour due to mechanical loads as well as corrosive attack by atmospheric constituents are the relevant properties.

At any rate, Morgan Advanced Materials Haldenwanger provides technical expertise for any specific enquiries, to facilitate the choice of the best ceramic material. For an initial estimate of all viable candidates however, the two stability diagrams shown in this brochure (see below) may be used.

Aluminium oxides

Material	Description	Properties and applications				
Alsint 99.7	High-purity, gas-tight aluminium oxide	 Material type C799 according to DIN EN 60672-3 Aluminium oxide content ≥ 99.7% Working temperature up to 1800°C Very high dielectric strength High mechanical strength Excellent refractoriness High corrosion resistance Versatile material for demanding thermal, chemical and mechanical applications (e.g., in furnace construction and temperature measurement) Standard geometries: tubes, solid rods, protection tubes, capillary tubes, plates, crucibles, saggars, insulators; customised dimensions upon request 				
Alsint PG ற	High-purity, fine grained aluminium oxide for special high temperature applications	 Aluminium oxide content ≥ 99.8% Working temperature up to 1800°C Improved refractoriness and corrosion resistance Material for protection tubes for extreme high temperature applications Order-related production in defined diameters and lengths; availability upon request 				
Alsint 96	Aluminium oxide for wear applications	 Aluminium oxide content ≥ 96% Working temperature up to 1400°C Wear resistant ceramic for use in mechanical engineering applications Order-related production for customer-specific geometries 				
Alsint 99.5	High-purity, porous aluminium oxide for high-temperature applications	 Aluminium oxide content ≥ 99.5% Working temperature up to 1700°C Very good thermal shock resistance Standard geometries: kiln furniture, tubes, crucibles, saggars and plates 				
SKA 100FF SKA 200FF	High-purity, porous aluminium oxide for filtration applications	 Aluminium oxide content ≥ 99.7% Working temperature up to 500°C Tubes for use in filtration applications and manifold tubes 				
HalFoam Alumina ⑦	Ceramic foam for high temperature thermal insulation	 Aluminium oxide content ≥ 98.5% Working temperature up to 1700°C Fibre-free, non-dusting insulation material High mechanical strength High corrosion resistance Order-based production for customised dimensions; availability upon request 				

Material properties

	Property	Unit	Alsint 99.7	Alsint PG	Alsint 96	Alsint 99.5	SKA I00FF	SKA 200FF	HalFoam Alumina
	Type according to EN 60672	-	C 799	C 799	-	-	-	-	-
	Main components	%	≥ 99.7 Al ₂ O ₃	≥ 99.8 Al ₂ O ₃	\geq 96 Al ₂ O ₃	≥ 99.5 Al ₂ O ₃	\geq 99.7 Al ₂ O ₃	≥ 99.7 Al ₂ O ₃	≥ 98.5 Al ₂ O ₃
GENERAL	Bulk density	$\frac{g}{cm^3}$	3.75–3.94	3.90–3.94	3.6–3.7	3.50–3.65	2.5–2.7	2.7–2.9	0.6
GEN	Water absorption capacity	%	0	0	0	1.5–3.0	12–13	8–10	-
	Porosity	Vol%	vacuum tight	vacuum tight	-	8–12	32–37	27–32	80
	Diameter or pores, average	μm	-	-	-	1.5–3.0	0.2–0.5	0.2–0.5	150–250
MECHANICAL	Medium Flexural strength at: 20°C 700°C 1300°C	MPa	300 - -	350 - -	200–260 – –	80–120 – –	30–50 – –	50–70 – –	3.5 _ _
MEC	Young's modulus at 20°C	GPa	300–380	300–380	-	-	-	-	_
	Linear coefficient of thermal expansion at 20–1000°C	<u> </u> 106 К	8–9	8–9	7.5–8.5	_	_	_	_
IAL	Thermal conductivity: 200°C 1000°C 1200°C	W m K	25 - -	25 - -	25 _ _	25 _ _	- - -	- - -	
THERMAL	Specific heat capacity at: 20–100°C 1000°C	J kg K		-	-	-	-		_ I200
	T _{max} depends on the area of application, but is max.	°C	1800	1800	1400	1700	-	-	1700
	Thermal shock resistance	_	good	-	-	good	-	_	_
ELECTRIC	Dielectric strength according to IEC 672-2	kV mm	17	-	-	-	-	-	_
	Resistivity at DC voltage 20°C	Ωcm	1014	-	-	-	-	-	_
	Feasibility/Availability			Ø					<u>?</u>

The physical and chemical values specified above have been determined acc. to standard DIN-EN 60672 and are applicable for the standard test specimens described in this norm. Given the material-specific properties of ceramic materials these values may not be applied directly to components deviating from the norm in size and shape. The values specified above do not constitute warranted properties as defined by law.

Aluminium silicates

Material	Description	Properties and applications
Pythagoras	Gas-tight aluminium silicate	 Material type C610 according to DIN EN 60672-3 Working temperature up to 1400°C High dielectric strength Good corrosion resistance Versatile material for demanding thermal, chemical and mechanical applications (e.g., in furnace construction and temperature measurement) Standard geometries: tubes, solid rods, protection tubes, capillary tubes; customised dimensions upon request
Pythagoras 1800Z ⑦	Gas-tight aluminium silicate for high-temperature applications	 Material type C620 according to DIN EN 60672-3 Working temperature up to 1600°C High mechanical strength Thin-walled tubes for excellent thermal shock resistance Tubes > 40 mm outside diameter for use as radiant tubes Availability upon request
Sillimantin KS	Supporting tubes for heating elements	 Working temperature up to I350°C No reaction with metallic heating elements Production in defined diameters and lengths
Sillimantin 60	Porous aluminium silicate	 Material type C530 according to DIN EN 60672-3 Working temperature up to I350°C Excellent thermal shock resistance Versatile material for demanding thermal and mechanical applications (e.g., in furnace construction and temperature measurement) Standard geometries: tubes, profiles, heating plates, bushings, spacers, customised dimensions upon request
Sillimantin 60 NG	Porous aluminium silicate for high-temperature applications	 Working temperature up to 1650°C High mechanical strength with good thermal shock resistance Standard geometries: tubes, protection tubes
Sillimantin 80	Porous aluminium silicate	 Working temperature up to 1350°C Very high thermal shock resistance Versatile material for demanding thermal and mechanical applications (e.g., in furnace construction and chemical process technology) Standard geometries: Crucibles, saggars, bushings and plates; customised dimensions upon request
FG50 ②	Mullite bonded, porous corundum material for filtration applications	 Working temperature up to I400°C Tubes and crucibles for use in filtration applications Availability upon request

Material properties

	Material	Unit	Pythagoras	Pythagoras I800Z	Sillimantin KS	Sillimantin 60	Sillimantin 60 NG	Sillimantin 80	FG50
	Type according to EN 60672	-	C 610	C 620	-	C 530	-	-	-
	Main components	%	56–58 Al ₂ O ₃ 38–40 SiO ₂	76–78 Al ₂ O ₃ 20–22 SiO ₂	70–72 Al ₂ O ₃ 25–27 SiO ₂	72–74 Al ₂ O ₃ 24–26 SiO ₂	73–75 Al ₂ O ₃ 22–24 SiO ₂	84–85 Al ₂ O ₃ I4 SiO ₂	> 87 Al ₂ O ₃ > 10 SiO ₂
GENERAL	Bulk density	$\frac{g}{cm^3}$	2.6	3.0	2.5–2.6	2.45	2.75–2.85	2.55–2.65	2.4–2.5
G E P	Water absorption capacity	%	0	0	6	9	I–3	8.5–10.5	10–14
	Porosity	Vol%	vacuum tight	vacuum tight	15–18	17–20	3–9	24–28	25–33
	Diameter or pores, average	μm	-	-	0.5–1.3	0.8–1.3	3.5–5.5	0.8–1.3	20–26
MECHANICAL	Medium Flexural strength at: 20°C 700°C 1300°C	MPa	20 _ _	150 _ _	45–60 – –	45 - -	60 - -	30–40 – –	- - -
MEC	Young's modulus at 20°C	GPa	100	150	60	60	100	_	_
	Linear coefficient of thermal expansion at 20–1000°C	<u> </u> 106 К	6	6	5.7	5.7	5.8	6.3	_
IAL	Thermal conductivity: 200°C 1000°C 1700°C	W m K	2 _ _	6 _ _	1.4 _ _	1.4 _ _	- - -		- - -
THERMAL	Specific heat capacity at: 20–100°C 1000°C	J kg K	- -	- -	800 -	800 -	900 _		
	T_{max} depends on the area of application, but is max.	°C	1400	1600	1350	1350	1650	1350	1400
	Thermal shock resistance	-	good	excellent	excellent	excellent	good	good	_
ELECTRIC	Dielectric strength according to IEC 672-2	kV mm	17	17	_	_	_	_	_
	Resistivity at DC voltage 20°C	Ωcm	1013	1013	-	-	-	-	_
	Feasibility/Availability			Ø					<i>?</i>

The physical and chemical values specified above have been determined acc. to standard DIN-EN 60672 and are applicable for the standard test specimens described in this norm. Given the material-specific properties of ceramic materials these values may not be applied directly to components deviating from the norm in size and shape. The values specified above do not constitute warranted properties as defined by law.

7

Silicon carbides

Material	Description	Properties and applications
Halsic-R	Recrystallized silicon carbide (RSiC)	 Working temperature up to 1600°C (oxidising), up to 2000°C (inert atmosphere) High thermal shock resistance High corrosion resistance Standard applications: kiln furniture for high temperature applications as well as tubes for temperature measurement in the gas phase Standard geometries: plates, beams, supports, tubes, protection tubes, rollers, saggars, crucibles, burner nozzles; customised dimensions upon request
Halsic-RX	Chemically modified recrystallized silicon carbide (RSiC _{dot})	 Working temperature up to 1650°C (oxidising) Very good oxidation resistance Standard applications: kiln furniture for the porcelain industry as well as heavy duty beams for high temperature applications Standard geometries: plates and beams
Halsic-N	Nitride bonded silicon carbide (NSiC)	 Working temperature up to 1450°C High mechanical strength Very good oxidation resistance Standard applications: kiln furniture and tubes for temperature measurement in non-ferrous metal melts Standard geometries: plates, beams, supports, protection tubes; customised dimensions upon request
Halsic-I	Silicon-filtrated, reaction-bonded silicon carbide (SiSiC)	 Working temperature up to 1350°C Very good thermal shock resistance Very good corrosion resistance Standard applications: heavy-duty beams as well as tubes for temperature measurement in the gas phase Standard geometries: beams, tubes and protection tubes
Halsic-S	Pressureless sintered, dense silicon carbide (SSiC)	 Working temperature up to 1600°C (oxidising), up to 2000°C (inert atmosphere) Very high mechanical strength Very high thermal shock resistance Very high corrosion resistance Standard applications: kiln furniture and tubes for temperature measurement in applications with extreme conditions Standard geometries: beams, tubes and protection tubes Availability upon request
SiC mullite bonded	Mullite bonded silicon carbide	 Working temperature up to I300°C Good thermal shock resistance Standard applications: tubes for temperature measurements in the gas phase Standard geometries: tubes and protection tubes in defined diameters and lengths

Material properties

	Property	Unit	Halsic-R	Halsic-RX	Halsic-N	Halsic-I	Halsic-S	SiC mullite bonded
	Main components	%	99 SiC	99 SiC	70 SiC 25 Si₃N₄ 5 Oxide	85–90 SiC 10–15 Si	99 SiC	70–90 SiC
ENERAL	Bulk density	g cm ³	2.7	2.7	2.8	3.0–3.1	3.1	2.2–2.5
GEN	Water absorption capacity	%	-	_	_	0	0	_
	Porosity	Vol%	10–15	10–15	8–15	vacuum tight	vacuum tight	_
MECHANICAL	Medium Flexural strength at: 20°C 700°C 1300°C	MPa	80–100 _ 90–110	80–100 _ 90–110	60 	240–280 	350–400 _ 370–420	30 - -
MECHA	Young's modulus at 20°C	GPa	280	280	250	370	420	_
	Linear coefficient of thermal expansion at 20–1000°C	<u> </u> 10 ⁶ K	4.5	4.5	4.2	4.3–4.5	5.0	5.0
THERMAL	Thermal conductivity: 200°C 1000°C 1700°C	W mK	100 25 -	100 25 -	100 20 -	100 30 -	125 30 -	- - -
THER	T _{max} depends on the area of application, but is max.	°C	1600 (ox.) 2000 (red.)	1650 (ox.)	1450	1350	1600 (ox.) 2000 (red.)	1300
	Thermal shock resistance	_	excellent	excellent	good	good	excellent	excellent
	Feasibility/Availability						D	

The physical and chemical values specified above have been determined acc. to standard DIN-EN 60672 and are applicable for the standard test specimens described in this norm. Given the material-specific properties of ceramic materials these values may not be applied directly to components deviating from the norm in size and shape. The values specified above do not constitute warranted properties as defined by law.

Fused silica – Zirconium oxides – Spinel

Material	Description	Properties and applications
Fused Silica	Porous roller material based on fused silica	 Silica content (amorphous) ≥ 99.7% Working temperature up to 1000°C Excellent thermal shock resistance Standard applications: rollers for heat treatment of glass and steel Standard geometries: solid, hollow and profiled rollers, with end caps upon request; customised dimensions and HalCoat Si₃N₄ coatings are also available
HalFoam Fused Silica ⑦	Ceramic foam for thermal insulation	 Silica content (amorphous) ≥ 85% Working temperature up to 1000°C continuous operating temperature up to 850°C Fibre-free, non-dusting insulation material Order-based production for customised structural components; availability upon request
ZrO ₂ Mgo-PSZ	Magnesia partially stabilised zirconia	 Working temperature up to 500°C Very high bending strength and abrasion resistance Wear resistant ceramic for use in mechanical engineering applications Order-based production for customised dimensions; availability upon request
ZrO ₂ CaO-FSZ	Calcia fully stabilised zirconia	 Working temperature up to 2000°C Excellent corrosion resistance Components for extreme high-temperature applications in temperature measurement or for laboratory applications Standard geometries: crucibles and tubes; availability upon request
HalDur C800	Composite material made of partially stabilised zirconia and alumina	 Working temperature up to 1400°C Excellent bending strength and abrasion resistance Good thermal shock resistance Wear resistant ceramic for use in mechanical engineering applications Availability upon request
MgO-Spinel	Fine ceramic magnesium aluminate spinel	 Working temperature up to 1700°C Excellent corrosion resistance Kiln furniture and crucibles for extreme high temperature applications with corrosion attack by alkali metals Availability upon request

Material properties

	Property	Unit	Quarzgut	HalFoam Fused Silica	ZrO ₂ Mgo-PSZ	ZrO ₂ CaO-FSZ	HalDur C800	MgO-Spinel
	Main components	%	99.7 SiO ₂	85 SiO ₂	95.5 ZrO ₂ + HfO ₂ 3.5 MgO	94 ZrO ₂ + HfO ₂ 5 CaO	62–63 ZrO ₂ + HfO ₂ 24 + 25 Al ₂ O ₃	≥ 67.5 Al ₂ O ₃ ≥ 31.5 MgO
	Bulk density	$\frac{g}{cm^3}$	1.92–2.00	0.85	5.6–5.8	5.4–5.7	5.2–5.5	≥ 3.5
GENERAL	Water absorption capacity	%	4–6	_	0	0	0	0
	Porosity	Vol%	10-14	70	vacuum tight	vacuum tight	vacuum tight	vacuum tight
	Diameter or pores, average	μm	0.2	150–200	_	_	_	_
MECHANICAL	Medium flexural strength at: 20°C 700°C 1300°C	MPa	30–40 45–60 –	1.5 - -	500–700 – –	200 _ _	750–850 – –	150 _ _
MECH	Young's modulus at 20°C	GPa	30-40	-	_	-	240	280
	Linear coefficient of thermal expansion at 20–1000°C	<u> </u> 10 ⁶ К	0.5	2.3 (20–800°C)	10	10	10.2	7–8
THERMAL	Thermal conductivity: 200°C 400°C 800°C	W m K	- - -	_ 0.35 0.45	- - -	- - -	12–14 _ _	2– 4 _ _
	T _{max} depends on the area of application, but is max.	°C	1000	1000	500	2000	1400	1700
	Thermal shock resistance	-	excellent	excellent	_	_	good	good
	Feasibility/Availability			Ð		Ø	Ø	Ø

The physical and chemical values specified above have been determined acc. to standard DIN-EN 60672 and are applicable for the standard test specimens described in this norm. Given the material-specific properties of ceramic materials these values may not be applied directly to components deviating from the norm in size and shape. The values specified above do not constitute warranted properties as defined by law.

? = upon request

Chemical resistance of high purity aluminium oxides Among others, Alsint 99.7, DIN EN 60672, part 3, type C 799 with 99.7% Al₂O₃ content

Agent	Chemical formula	up to % conc.	up to °C temp	Agent	Chemical formula	up to % conc.	up to °C temp
Alum	KAI(SO ₄) ₂	10	20	Iron nitrate	Fe(NO ₃) ₃	100	20
Aluminium chloride	AICI3	25	100	Iron (II) sulphate	FeSO ₄ 7H ₂ O	100	boiling
Aluminium sulphate	Al ₂ (SO ₄) ₃	80	boiling	Iron (III) sulphate	$\operatorname{Fe}_2(SO_4)_3$	30	50
Ammonium hydroxide	NH ₃	57 25 concentrated	I20 boiling I00	Hydrofluoric acid	HF	40 40 50	20 50 20
Ammonium bromide	NH₄Br	10	20	Potassium chloride	KCI	30	boiling
Ammonium carbonate	(NH ₄) ₂ CO ₃	30 saturated	80 100	Potassium cyanide	KCN	saturated 10	100 20
Ammonium chloride	NH₄CI	50 50	20 boiling	Potassium hydroxide	кон	50 50	20 boiling
		saturated	boiling	Potassium hypochlorite	KCIO	120 g/l	150
Ammonium fluoride	NH₄F	20	80	Potassium nitrate	KNO3	saturated	boiling
Ammonium nitrate	NH₄NO₃	50	20	Potassium perchlorate	KCIO ₄	75	20
		50	boiling	Potassium permanganate	KMnO ₄	80	boiling
Ammonium sulphate	(NH ₄) ₂ SO ₄	100	boiling	Potassium sulphate	K ₂ SO ₄	20	50
Arsenic acid	H ₃ AsO ₄	100	20	Silicofluoric acid	H_2SiF_6	30	25
Barium chloride	BaCl ₂	20	100	Aqua regia	HCL + HNO3	30	20
Barium hydroxide	Ba(OH) ₂	saturated	boiling	Copper (II) chloride	CuCi ₂	saturated	boiling
Bisulfit waste liquor, calcium bisulfite	Ca(HSO ₃) ₂	100	20	Copper sulphate	CuSO₄	all	boiling
Cyanide	HCN	100	20	Magnesium chloride	MgCl ₂	40	boiling
Boric acid	H ₃ BO ₃	50	boiling	Magnesium sulphate	MgSO4	50 saturated	boiling 50
Bromine	Br	dry	boiling	Manganese chloride	MnCl,	50	100
Potassium bisulphate	Ca(HSO ₄) ₂	-	20	Manganese sulphate	MnSO₄	all	20
Calcium hypochloride	Ca(OCI) ₂	20	20	Seawater	_	_	20
Calcium nitrate	Ca(NO ₃) ₂	-	20	Sodium bisulphate	NaHSO₄	saturated	boiling
Calcium sulphate	CaSO ₄	10	boiling			saturated	boiling
Chlorine	CI	dry	50	Sodium carbonate	Na ₂ CO ₃	50	boiling
Chlorsulfonic acid	HSO ₃ CI	-	boiling	Sodium chlorate	NaClO ₃	5	boiling
Chromic acid	H ₂ CrO ₄	50 50	20 boiling	Sodium chloride	NaCl	pure	boiling
Iron (II) chloride	FeCl ₂	30 10	100 boiling	Sodium chlorite	NaClO ₂	5 10 35	boiling 20 boiling
		saturated 50	20 50	Sodium hydroxide (caustic soda)	NaOH	50 70	20 boiling
Iron (III) chloride	FeCl ₃	50	boiling	Sodium hydrogen carbonate	NaHCO ₃	all	boiling

Agent	Chemical formula	up to % conc.	up to °C temp
Sodium hypochloride	NaClO	10 g Cl/l	20
Sodium nitrate	NaNO ₃	-	100
Sodium nitrite	NaNO ₂	-	100
Sodium peroxide	Na ₂ O	10	boiling
Sodium sulfate	Na_2SO_4	saturated	boiling
Sodium sulfide	Na ₂ S	50 saturated	boiling boiling
Sodium sulfite	Na ₂ SO ₃	50	boiling
Sodium thiosulfite	$Na_2S_2O_3$	25	boiling
Nickel chloride	NiCl ₂	30 80	boiling 100
Nickel nitrate	Ni(NO ₃) ₂	-	20
Nickel sulfate	NiSO₄	-	80
Phosphoric acid	H ₃ PO ₄	I 45 80 90 concentrated	135 boiling boiling boiling 20
Mercury	Hg		50 boiling
Nitric acid	HNO ₃	65 65 70 100	20 boiling 100 boiling
Hydrochloric acid	HCI	35	boiling
Sulfurous acid	H ₂ SO ₃	saturated	20
Sulfuric	H ₂ SO ₄	60 60 96 96	boiling 77 20 boiling
Sodium chloride solution	-	saturated	boiling
Zinc (II) chloride	ZnCl ₂	60	boiling
Tin (V) chloride	SnCl ₂ , SnCl ₄	all	150

The behaviour of our dense Alsint materials when exposed to various chemicals A is described in the table of properties. We recommend the use of our very pure, dense alumina ceramic Alsint 99.7. The temperature limits and the concentrations – up to which no attack takes place – are also quoted. Values can vary, though, for different concentrations and temperatures.

Agent: gases	Atmosphere	Resistant up to °C
Oxygen	oxidising	2000
Hydrogen	reducing	1600
N, F, He, Ne, Ar, Kr, Xe, Rn	vacuum	1800

Agent: elements, metal alloys	Atmosphere	Resistant up to °C	
Al	-	750	
В	-	1100	
С	vacuum	1100	
Si	vacuum/inert	1200	
Mg and Ca	reducing	750	
К	-	restricted	
V, Ni, Ta	-	1450	
Та	vacuum	1350	
Cl, Se. Te, Mo, W	inert	1500	
U	-	1500	
Bi, Fe, Co, Mn, Ni, Pb, Sb and Zn	Oxides of these metals usually act corrosively		

High purity alumina oxide ceramic is also attacked by Lithium

Agent: melts and slags	Reaction	Resistant up to °C	
Alkali chlorides	-	750	
Alkali sulphates	-	750	
Alkali nitrates	-	750	
CaC_2 and TiC	reducing from	1100	
SiC	-	1600	
Hybrides (Ca-Hybride)	reducing from	300	
Metallurgical melts	-	different	
Molten glass (free of phosphoric and boric acid)	molten sodium pyrosulfate attacks	melting point of the glass	
All resistant with the exception of:	= sufficiently resistant		

= not resistant

Tolerances according to DIN 40680

Diameter and deflection tolerances without grinding according to DIN 40680

Nominal Ø		Accuracy (admissible tolerances)		Nom	inal	Accuracy (admissible deflection fa)		
or	length	coarse	medium	leng	gth	coarse	mediur	m
	above 4	± 0.4	± 0.15		bove 30	1.7	0.15	
above 4	up to 6	± 0.6	± 0.20	above 30	40	1.8	0.20	
6	8	± 0.7	± 0.25	40	50	1.9	0.25	
8	10	± 0.8	± 0.30	50	60	2.0	0.30	
10	13	± 1.0	± 0.35	60	70	2.1	0.35	
13	16	± 1.2	± 0.40	70	80	2.1	0.40	
16	20	± 1.2	± 0.45	80	90	2.2	0.45	
20	25	± 1.5	± 0.50	90	100	2.3	0.50	
25	30	± 1.5	± 0.55	100	110	2.4	0.55	
30	35	± 2.0	± 0.60	110	125	2.5	0.65	
35	40	± 2.0	± 0.65	125	140	2.6	0.70	
40	45	± 2.0	± 0.70	140	155	2.7	0.80	
45	50	± 2.5	± 0.80	155	170	2.9	0.85	
50	55	± 2.5	± 0.90	170	185	3.0	0.90	
55	60	± 2.5	± 1.00	185	200	3.1	1.00	
60	70	± 3.0	± 1.20	200	250	3.5	1.25	
70	80	± 3.5	± 1.40	250	300	3.9	1.50	
80	90	± 4.0	± 1.60	300	350	4.3	1.75	
90	100	± 4.5	± 1.80	350	400	4.7	2.00	
100	110	± 5.0	± 2.00	400	450	5.1	2.25	
110	125	± 5.5	± 2.20	450	500	5.5	2.50	
125	140	± 6.0	± 2.50	500	600	6.3	3.00	
140	155	± 6.5	± 2.80	600	700	7.1	3.50	
155	170	± 7.0	± 3.00	700	800	7.9	4.00	
170	185	± 7.5	± 3.40	800	900	8.7	4.50	
185	200	± 8.0	± 3.80	900	1000	9.5	5.00	
200	250	± 9.0	± 4.20	1000		1.5 + 0.8% · 1	0.509	% · I
250	300	± 10.0	± 4.60					
300	350	± 11.0	± 5.00					
350	400	± 12.0	± 5.50					
400	450	± 13.0	± 6.10				Acc	uracy
450	500	± 14.0	± 6.80	Manufactur	ing process		coarse	me
500	600	± 15.0	± 7.60	Manufactur	ing process		coarse	me
(00		1						1

± 8.30

± 9.00

± 9.50

± 10.00

 \pm 0.01 \cdot d

		Accuracy		
Manufacturing process	coarse	medium		
Cast, turned, extruded for parts with an envelope size of 30 mm and higher	•			
Extruded for parts with an envelope size up to 30 mm, non-metered pressed, metered semi-moist pressed, metered dry pressed, white machined		•		

All specifications in mm, please contact us for stricter tolerances.

± 16.0

± 17.5

± 19.0

± 20.0

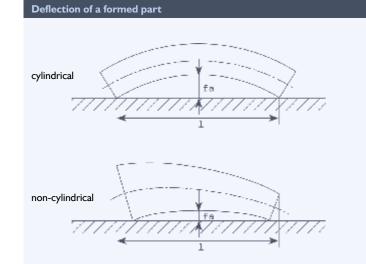
 \pm 0.02 \cdot d

600

700

800

900


1000

700

800

900

1000

	Accuracy			
Manufacturing process	coarse		medium	
DIN EN 60672, Type	C 610	C 799	C 610	C 799
Casted	•	•		
Turned	•			
Extruded envelope size 30 mm and higher	•	•		
Extruded envelope size up to 30 mm			٠	•

The values for accuracy in the column under the heading 'coarse' are not applicable to the first manufacturing. Special agreements are required. • Customary manufacturing process

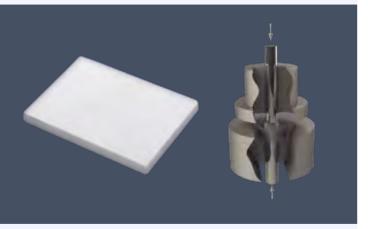
Our ceramic shaping variants

Extrusion

This is a very economical method for shaping elongated bodies, even with profiles or several bores in the direction of flow. Dimensional tolerances according to DIN 40680 can be maintained. Closer tolerances may be obtained by grinding the fired part.

Dry pressing

This process is suitable for large quantities at reasonable prices. The geometry of the parts should not be too complicated. Ideally, the height should be only a fraction of the diameter. Varying elevation within the part can be produced. Bores, grooves and recesses must be in the direction of pressing. Undercuts cannot be pressed. Dimensional tolerances are according to DIN 40680. Closer tolerances can be obtained by grinding after firing.



Isostatic pressing

This method is used for the production of small or large items from Alsint 99.7. The isostatically pressed blank, whether tubular, square, triangular, circular or irregular, is machined in an unfired condition. Practically any geometry can be machined, including undercuts, conical bores and other shapes, from ceramic. Dimensional tolerances according to DIN 40680 are maintained. Closer tolerances can be achieved by grinding after firing.

Slip casting

For the manufacture of simple hollow bodies such as crucibles, dishes or trays, the wall thickness must be exactly the same. Dimensional tolerances are according to DIN 40680. Apart from our laboratory ware, closed end tubes made of Silicon Carbide and Fused Silica Rollers are produced by the slip casting method.

HALDENWANGER

PORZELLAN

iche Gesor mpischaler + spide schirre fli HR Nehrift Bieni W. year whis. sec, Cap to pattern d. formation Po 034-Latimis Da Mar

lalson fond

SP(cia)

Ballons, Capsules, Northers, Nesur

de pelature

BAIDERS, LAUNDERS, JANNARS POUR DESCONACIONE

A.C

vasijas para er

Morgan Advanced Materials Haldenwanger has developed from its foundation in 1865 to

become one of the world's leading manufacturers of high-tech ceramics. We offer you an extensive range of products made of oxide and non-oxide materials, which are primarily used in demanding thermal, chemical or even mechanical applications. Thanks to our wealth of expertise in ceramics, we serve you not only as a supplier, but also as a reliable partner in developing solutions for your challenges.

de vasigeria higiénica

RM

HALDENWANGER

Charlottenburg, Alemania

1986888888899666668888

ases pour hopitanx avec l'étilitetts acca l'émail=pm

Pits courants Bratia et franco.

artik nomo la Beal Pálzion de

-vrolas, eilindros de arcilla

Rohre aus Masse Sillimantin "R" Aug

Ria

町次山泉

HALTENA

3350

clalidas

Morgan Advanced Materials Haldenwanger GmbH Teplitzer Str. 27 84478 Waldkraiburg, Germany +49 (0)8638 60 04-0 ⊠ info@haldenwanger.de

L. I